Showing posts with label Chi-squared. Show all posts
Showing posts with label Chi-squared. Show all posts

Thursday, December 10, 2015

Particle Tracking: Least square fitting berbasis konvolusi

Ini adalah interpretasi bebas saya atas tutorial MDS di halaman granular material labs-nya. Idenya sederhana: menggunakan least square fitting berbasis konvolusi untuk menge-track pergerakan suatu partikel/image.

Least Square Fitting

Least square fitting adalah teknik kesesuaian atau kecocokan (godness fit) untuk mencari nilai terbaik yang paling mirip antara data observasi dengan data estimasi atau function fit. Jika data observasi dimisalkan dengan $y_i$ dan fungsi estimasi disimbolkan dengan $f(x_i)$ maka "least square fit" adalah jumlahan selisih nilai observasi dengan fitting function,

$$\sum\limits_{i=1}^n \left( {{y_i}-f ({x_i})}^2 \right)$$

Jika jika memiliki data dengan rentang error bar atau variansi, maka chi-square didefinisikan sebagai least square diatas dibagi dengan "error bar"nya, yakni, $\sigma$.

$$ \chi^2=\sum\limits_{i=1}^n \left( \dfrac{{y_i}-f({x_i})}{\sigma} \right)^2 $$

Nilai chi-square (χ2) berkisar antara 0 sampai dengan tak hingga (~), semakin kecil nilai chi-squared maka semakin mirip nilai observasi dengan nilai ekspektasi, dalam hal particle tracking, maka gambar bulatan particle akan semakin tipis sehingga semakin mudah dibedakan antar satu dengan yang lainnya. Pada tutorial kali ini, least square fitting yang digunakan adalah berbasis konvolusi yang akan dijabarkan pada tulisan dibawah.

Fungsi Partikel Ideal

Misalkan partikel yang ingin kita track posisinya memiliki fungsi ideal sebagai berikut, $$I_c(\vec{x})=\sum_{n=1}^{N} I_p(\vec{x}-\vec{x}_n(t);D,...),\;\;\;\;\;\;[1]$$ dengan $N$ adalah jumlah partikel dan $$I_p(\vec{x};D,...)$$ fungsi tersebut menggambarkan bentuk partikel ideal yang berada di tengah. Partikel ideal bergantung pada variabel diameter dan variabel lain yang digunakan dalam teknik pengolahan citra. Untuk demo ini kita menggunakan fungsi partikel ideal sbb,

$$I_p(\vec{x};D,w)= \dfrac{\bigl[1-tanh(\frac{|\vec{x}|-D/2}{w})\bigr]}{2}$$

Related Posts Plugin for WordPress, Blogger...