Sesuai formulanya, SNR dirumuskan sebagai berikut;
$$SNR=\dfrac{P_{signal}}{P_{noise}}$$
dimana P merupakan power rata-rata baik dari sinyal maupun noise yang diukur pada t yang sama dan dalam bandwith yang sama. Jika sinyal dan noise memiliki impedansi yang sama, maka SNR dapat dihitung dari kuadrat Amplitudo kedua sinyal dan noise tersebut. Agar mempunyai impedansi yang sama, pada praktek penghitungan SNR dengan matlab/Octave nilai SNR dinormalisasi dengan perintah
.
norm
dimana A merupakan root mean square (rms) dari amplitudo sinyal. Karena banyak sinyal memiliki dynamic range, maka SNR dapat dinyatakan dalam decibel (dB) sebagai berikut:
yang mana persamaan di atas ekuivalen dengan persamaan sebelumnya sehingga SNR dalam dB dapat dituliskan dalam persamaan akhir berikut.
Nah, bagaimana listing code-nya dalam Matlab/Octave? Silakan pelajari m-file berikut yang saya rangkum dari link sebelah. Setiap persamaan diatas diakomodir oleh kode dibawah, misalnya baris 24-25 untuk persamaan pertama.
% SNR demo Fs=2000; % Sampling Frequency Fc=10; % Carrier Frequency t=0:1/Fs:1; % define evaluation time signal=sin(2*pi*Fc*t); % Sample signal waveform SNR=5; % SNR 5 dB will be added to signal % Generate Gaussian Noise with zero mean and unit variance noise=randn(1,length(signal)); %Scale the input signal accordingly for the given SNR. scaledSignal = std(noise)/std(signal)*(sqrt(10^(SNR/10)))*signal; %calculate Signal power and noise power signalPower = (norm(scaledSignal)^2)/length(scaledSignal); noisePower = (norm(noise)^2)/length(noise); %Alternative way of calculating Signal and noise power from their variance %signalPower = var(scaledSignal); %noisePower = var(noise); % Calculate Signal to noise ratio for the scaledSignal and generated Noise SNRratio = signalPower/noisePower; measuredSNR=10*log10(SNRratio); % Add the scaled signal with the generated noise signalWithNoise=scaledSignal+noise; % plotting commands Fs=2000; %Sampling Frequency Fc=10; % Carrier Frequency t=0:1/Fs:1; % define evaluation time signal=sin(2*pi*Fc*t); % Sample signal waveform % Generate Scaled signal, noise for SNR = 5dB % Also works well for negative SNR subplot(3,1,1); plot(scaledSignal); title('Input Signal'); subplot(3,1,2); plot(noise); title('Generated Noise'); subplot(3,1,3); plot(signalWithNoise); title(['Signal + Noise for SNR= ',num2str(measuredSNR),' dB']);Bila anda sukses anda akan mendapatkan hasil plot seperti dibawah. Untuk mengecek benar tidaknya program yang kita buat dapat dengan melihat SNR (measuredSNR) dimana seharusnya mendekati 5 dB karena di awal program telah ditentukan bahwa noise yang ditambakan ke sinyal sebesar 5 dB. Hasil yang ditunjukkan program tidak eksak sebesar 5 dB (sekitat 4,9xx atau 4,8xx dB) karena random noise yang berubah secara random pula... :-)
Selamat Mencoba...
Plot dari Sinyal, Noise dan Sinyal+Noise |